
DOI 10.1007/s10898-005-5369-0
Journal of Global Optimization (2006) 35: 637–651 © Springer 2006

A System for Distance Studies and Applications
of Metaheuristics

JONAS MOCKUS
Department of Optimization, Institute of Mathematics and Informatics, Akademijos 4,
LT-2600 Vilnius, Lithuania (e-mail: jmockus@gmail.com)

(Received 17 November 2005; accepted 21 November 2005)

Abstract. The efficiency of metaheuristics depends on parameters. Often this relation is
defined by statistical simulation and have many local minima. Therefore, methods of sto-
chastic global optimization are needed to optimize the parameters. The traditional numerical
analysis considers optimization algorithms that guarantee some accuracy for all functions
to be optimized. This includes the exact algorithms. Limiting the maximal error requires a
computational effort that often increases exponentially with the size of the problem [Horst
and Pardalos (1995), Handbook of Global Optimization, Kluwer Academic Publisher, Dordr-
echt/Boston/London]. That limits practical applications. An alternative is the average analysis
where the expected error is made as small as possible [Calvin and Zilinskas (2000), JOTA
Journal of Optimization Theory and Applications, 106, 297–307]. The average is taken over a
set of functions to be optimized. The average analysis is called the Bayesian Approach (BA)
[Diaconis (1988), Statistical Decision Theory and Related Topics, Springer-Verlag, Berlin, pp.
163–175, Mockus and Mockus (1987), Theory of Optimal Decision, Vol. 12, Institute of Math-
ematics and Cybernetics, Akademia Nauk Lithuanian SSR, Vilnius, Lithuania pp. 57–70].
Application of BA to optimization of heuristics is called the Bayesian Heuristic Approach
(BHA) [Mockus (2000), A Set of Examples of Global and Discrete Optimization: Application
of Bayesian Heuristic Approach, Kluwer Academic Publishers, Dordrecht, ISBN 0-7923-6359-
0]. If the global minimum is known then the traditional stopping condition is applied: stop
if the distance to the global minimum is within acceptable limits. If the global minimum is
not known then the different approach is natural: minimize the average deviation during the
fixed time limit because there is no reason to stop before. If the distance from the global
minimum is not known the efficiency of method is tested by comparing with average results
of some other method. “Pure” Monte Carlo is a good candidate for such comparison because
it converges and does not depend on parameters that can be adjusted to a given problem by
using some expert knowledge or additional test runs. In this paper a short presentation of the
basic ideas of BHA [described in detail in Mockus (2000, A Set of Examples of Global and
Discrete Optimization: Application of Bayesian Heuristic Approach, Kluwer Academic Pub-
lishers, Dordrecht, ISBN 0-7923-6359-0) and Mockus (1989, Bayesian Approach to Global
Optimization, Kluwer Academic Publishers, Dordrec ht-London-Boston)] is given. The sim-
plest knapsack problem is for initial explanation of BHA. The possibilities of application are
illustrated by a school scheduling problem and other examples. Designed for distance graduate
studies of the theory of games and markets in the Internet environment. All the algorithms
are implemented as platform independent Java applets or servlets therefore readers can easily
verify and apply the results for studies and for real life heuristic optimization problems. To
address this idea, the paper is arranged in a way convenient for the direct reader participation.
Therefore, a part of the paper is written as some “user guide”. The rest is a short description



638 J. MOCKUS

of optimization algorithms and models. All the remaining information is on web-sites, for
example http://pilis.if.ktu.lt/∼mockus.

Key words: Bayesian, Distance Studies, Metaheuristics, Optimization

1. Introduction: How to Write Papers About Heuristics?

The answer for mathematical papers is simple:
– theorem – proof – example.

In papers about heuristics the algorithms and models can be regarded as
“theorems”. The comparison with other heuristics for some test examples
can be regarded as an efficiency proof.

This is the weak part of reports about heuristics. The reason is that the
results of heuristics depends on the proper choice of parameters. That is
difficult because the parameters depends on both the model to be opti-
mized and on the time available for optimization. If the optimization time
is long then the convergence properties of heuristics can be significant. If
the time is short then the average deviation is important. Thus heuristics
work better in the hands of authors as usual. Therefore reported tables
and graphs depend on both the quality of heuristics and expert knowledge
of authors defining the parameters. There exist some theoretical recom-
mendations concerning these parameters. These recommendations depend
on some other parameters that are often unknown. For example, in the
Simulated Annealing the initial “temperature” depends on the difference
between the maximal and minimal values.

The graphs that show the relations of results on parameteras are useful
for those who regard similar problems. Others may obtain different results.

These are reasons why in this paper a different approach is regarded.
Traditional tables and graphs are replaced by a short description of algo-
rithms and models with references to web-sites where complete descriptions
are presented. The web-sites contain a set of Java applets and servlets thus
all the comparisons can be made by the readers. To start Java applets the
web browser must have some Java plug-in. For Java servlets any browser
works.

For advanced users a Global Minimization Java framework (GMJ) is
developed. Applying GMJ readers can add their own models and methods
and to test them directly.

The main scientific tool is the Bayesian Approach (BA). The BA is based
on some statistical model of the function to be minimized and can be used
in stochastic global optimization. That is needed for optimization of heuristic
parameters. The application of BA for this task we call the Bayesian Heuristic
Approach (BHA). Users can run other algorithms by the GMJ, too.
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Many examples are simplified economic and social models transformed
into the optimization problems. The models are not difficult for under-
standing. The computing time does not exceed reasonable limits as usual.

The full set of examples and the complete theoretical explanation is on
the six mirror web-sites. This increases the reliability of Internet communi-
cations.

No “perfect” examples in these web-sites. All examples has some advan-
tages and some disadvantages. Improvement of “non-perfect” models is
useful for students and interesting for colleagues.

The main objective of this paper is to establish scientific collaboration in
the Internet environment with distant colleagues and students.

The paper represents the extended introduction to the main results. The
complete description is available on the web-sites. Important part of this
introduction is the presentation of the main ideas and goals for develop-
ing those web-sites.

In this paper parameters of two well-known metheuristics – Simulated
Annealing (SA) and Genetic Algorithm (GA) – are optimized using the
knapsack problem as an example. The results are compared with the
default values of SA and GA. The investigation of these and other meta-
heuristics using different test functions is important future task.

1.1. bayesian approach (BA)

The BA is defined by fixing a prior distribution P on a set of functions
f (x) and by minimizing the Bayesian risk function R(x) [6, 7]. The risk
function describes the average deviation from the global minimum. The dis-
tribution P is regarded as a stochastic model of f (x), x ∈Rm, where f (x)

can be a deterministic or a stochastic function. This is possible because
using BA uncertain deterministic functions can be regarded as some sto-
chastic functions [7–11]. That is important feature of the BA in this setup.
For example, if several values of some deterministic function zi =f (xi), i =
1, . . . , n are known then the level of uncertainty can be represented as the
conditional standard deviation sn(x) of the corresponding stochastic func-
tion f (x)=f (x,ω), where ω is a stochastic variable.

In the Gaussian distribution [6], assuming that the (n+1)th observation
is the last

R(x)=1/(
√

2πsn(x))

∫ +∞

−∞
min(cn, z)e

− 1
2 (

y−mn(x)

sn(x)
)

2

dz. (1)

Here cn = mini zi − ε, z = f (x), mn(x) is the conditional expectation at
the point x given the values of zi, xi i = 1, . . . , n and ε > 0 is a correc-
tion parameter. This parameter improves “a-step-ahead” approximation (1)
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of the multi-stage decision process. Therefore ε is a decreasing function of
iteration number. The convergence depends on ε, too (2).

The Wiener process is the simplest stochastic model in the uni-dimen-
sional case m=1 [12–14].

The Wiener model implies that almost all the sample functions f (x) are
continuous, that increments f (x4)−f (x3) and f (x2)−f (x1), x1 <x2 <x3 <

x4 are stochastically independent, and that f (x) is Gaussian (0, σx) at any
fixed x >0. Note that the Wiener process originally provided a mathemat-
ical model of a particle in Brownian motion. Figure 1 shows the general
shape of the functions mn(x), sn(x), and R(x).

The Wiener model can be extended to multi-dimensional problems, too
[6]. However, simple approximate stochastic models are preferable if m>1.
The simple models are designed by replacing the traditional Kolmogorov
consistency conditions. These conditions require the inversion of matrices
of nth order for computing the conditional expectation mn(x) and variance
sn(x)2. The Markov processes (including the Wiener process) are favorable
exceptions. Extending the Wiener process to m>1 the Markovian property
disappears.

Replacing the regular consistency conditions by:

– continuity of the risk function R(x);
– convergence of xn to the global minimum;
– simplicity of expressions of mn(x) and sn(x).

The following simple expression of R(x) is obtained using the results of [6].

R(x)= min
1�i�n

zi − min
1�i�n

‖x −xi‖2

zi − cn

.
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Figure 1. Wiener model.
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The aim of BA (designed mainly for continuous cases) is to provide as
small average error as possible. In addition, BA has some good asymptotic
properties, too. It is shown [6] that

d∗/da =
(

fa −f ∗ + ε

ε

)1/2

, n→∞, (2)

where d∗ is density of xi around the global optimum, da average density
of xi , f ∗ the optimal value of f (x), fa the average value, and ε is the cor-
rection parameter. Thus BA provides convergence to the global minimum
for any continuous f (x) and greater density of observations xi around the
global optimum if n is large and ε is small.

Note that the correction parameter ε has a similar influence as the tem-
perature in simulated annealing. However, that is a superficial similarity
since, using BA the good asymptotic behavior should be regarded just as
a “by-product”. The reason is that Bayesian decisions are designed for the
small size samples where asymptotic properties are not noticeable as usual.

The optimal point xn+1 for the next iteration of BA is the solution
of some auxiliary optimization problem minimizing the average deviation
R(x) from the global optimum (see Figure 1). That makes the BA useful
mainly for the computationally expensive functions of a few (m<20) con-
tinuous variables.

If the number of variables is large and the objective function is not
expensive the BHA is preferable. That is true in many discrete optimization
problems. These problems are solved using heuristics based on an expert
opinion as usual.

1.2. bayesian heuristic approach (BHA)

Using the BHA we fix a prior distribution P on a set of auxiliary functions
f (x)=fK(x). Auxiliary functions defining the best values obtained using K

times some heuristic h(x).
The aim of the heuristic h(x) is to optimize an original function v(y)

of variables y ∈ Rn [15]. As usual the components of y are discrete vari-
ables. The heuristic h(x) represents an expert opinion about the decision
priorities. The heuristics or their “mixture” depend on some continuous
parameters x ∈Rm, where m<n as usual.

The aim of BA is to search for such parameters x that minimize the
expected deviation from the global minimum of the auxiliary function
f (x).

In BHA, the expert knowledge is included by defining the heuristics.
Here the Bayesian decision theory is to optimize parameters of the heuris-
tics by BA.
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The popular heuristics are randomization procedures depending on some
empirically defined parameters. For example, the parameter x is the ini-
tial temperature, if the SA is applied. If the mixture of m different algo-
rithms is used then the heuristic parameters x = (x1, . . . xm) are probabilities
of different randomization algorithms.

In these problems, the BA is a convenient tool for optimization of the
continuous parameters of various heuristic techniques. That is called the
BHA [15].

1.3. improving expert heuristics

The main objective of BHA is to improve any given heuristic or the
“mixture” of different heuristics by defining the best parameters. The exam-
ples indicate that heuristic decision rules mixed and adapted by BHA
often outperform the best individual heuristics. In addition, BHA provides
almost sure convergence. However, the final results of BHA depend on the
quality of the specific heuristics including the expert knowledge. Therefore,
the BHA should be regarded as a tool for enhancing the heuristics but not
for replacing them.

Many well known optimization algorithms, such as GAs [16], GRASP
[17], and Tabu Search [18], may be regarded as metaheuristics that can be
improved using BHA.

The GAs [16] is an important “source” of useful stochastic search
heuristics. It is well known that the results of the GAs depend on the
mutation and cross-over parameters. The BHA can be used to optimize
those parameters.

In the GRASP system [17], the heuristic is repeated many times. Dur-
ing each iteration a greedy randomized solution is constructed and the
neighborhood around that solution is searched for a local optimum. The
“greedy” component constructs a solution by adding single elements until
the final solution is constructed. A possible application of the BHA in
GRASP is in optimizing a random selection of a candidate to be in the
solution because different random selection rules may be used and their
best parameters should be defined. The BHA can be useful as a local com-
ponent, too, by randomizing the local decisions and optimizing the corre-
sponding parameters.

In Tabu search the issues of identifying best combinations of short and
long-term memory and best balances of intensification and diversification
strategies can be obtained using BHA.

Hence, the BHA can be applied to improve various stochastic or heuris-
tic algorithms of discrete optimization. The proved convergence of a dis-
crete search method is an asset. If not, then the convergence conditions are
provided by tuning the BHA parameters [15].
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A large collection of examples for comparison of different methods of
global and discrete optimization are in [19].

Another source of heuristics are exact algorithms developed by mathe-
matical means when applied outside the original scope. For example, the
Gupta heuristic is the well-known exact algorithm for the two-machine
flow-shop problem. For general flow-shop problem this algorithm is just a
good heuristic [15].

2. Optimization of Mixed Heuristics

2.1. knapsack example

The example of knapsack problem illustrates the application of BHA in
discrete optimization. Given a set of objects j =1, . . . , n with values cj and
weights gj , find the most valuable collection of limited weight

max
y

v(y), v(y)=
n∑

j=1

cjyj ,

n∑
j=1

gjyj �g.

Here the objective function v(y) depends on n Boolean variables y =
(y1, . . . , yn), where yj = 1 if object j is in the collection, and yj = 0,
otherwise.

2.1.1. Greedy Heuristics

Greedy heuristics build a system from scratch. The well-known greedy heu-
ristic hj =cj/gj is the specific value of object j . The greedy heuristic algo-
rithm: “take the greatest feasible hj ”, is fast but may get stuck in some
non-optimal decision.

We move out of such non-optimal decisions by taking decision j with
probability rj = ρx(hj ), where ρx(hj ) is an increasing function of hj and
x = (x1, . . . , xm) is a parameter vector. Here the BA is to optimize the
parameters x by minimizing the best result fK(x) obtained applying K

times the randomized heuristic algorithm ρx(hj ). That is the expensive
operation of BHA. Therefore, the parallel computations of fK(x) are used,
if possible. That reduces the computing time in proportion to the number
of parallel processors.

Optimization of x adapts the heuristic algorithm ρx(hj ) to a given prob-
lem. Let us illustrate the parameterization of ρx(hj ) by three randomi-
zation functions: rl

i = hl
i/

∑
j hl

j , l = 0,1,∞. Here the upper index l = 0
denotes the Monte Carlo component (randomization by the uniform dis-
tribution). The index l =1 defines the linear component of randomization.
The index ∞ denotes the pure heuristics with no randomization:// r∞

i = 1
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if hi = maxj hj , and r∞
i = 0 , otherwise. Here parameters x = (x0, x1, x∞)

define the probabilities of using randomizations l = 0,1,∞. The optimal
x may be applied solving different but related problems, too [15]. That is
important in the “on-line” optimization and illustrates some “learning” of
Bayesian methods.

Figure 2 shows the output window of “mixture” optimization using three
heuristics.

2.1.2. Permutation Heuristics

Improving some initial expert decision is the objective of permutations heu-
ristics. Here the expert knowledge is involved in the initial decision. Apply-
ing BHA for global minimization different permutations of some feasible
solution y0 are tested. Heuristics are defined as the difference hi = v(yi)−
v(y0) between the permuted yi and the original y0 solutions.

The simplest version of SA algorithm illustrates the parameterization of
ρx(hj ) depending on a single parameter x. The probability of accepting
worse solutions is e−hi/x , where x is the “annealing temperature”.

2.2. optimization of simulated annealing (SA)

A good example is optimization of profiled school schedule model. The
vector objective is evaluated by linear scalarization. The relative importance
of various factors are defined by the school authorities. The initial sched-
ule is provided by the school in the “csv” format, because the data are
prepared by “Excel” as usual. Note that i/o by the standard “txt” format
works well for all tested environments including various versions of Linux
and Windows. The i/o by “csv” works for some environments.

Figure 2. Optimal mixture.
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2.2.1. Optimization by Permutations

The initial schedule is improved by permutations. Permutations are done by
trying to close the teacher “windows” (empty times between lectures). The
best obtained schedule is recorded after each iteration. Changes to worse
schedules are made with some probabilities. That is for improving conver-
gence conditions.

Three different heuristics are regarded. Two heuristics with fixed param-
eters and the third heuristic with parameters obtained by global stochastic
optimization.

Using the first heuristic we keep the current schedule until the better
schedule is found. The parameter x1 is the probability to pass by the next
teacher. This way we can reach just a sort of local minimum.

A natural first step to provide convergence to the global minimum is the
SA: we move from the current schedule i to the permuted schedule i + 1
with probability

ri+1 =
{

e
−hi+1

x2/ ln(1+N) , if hi+1 >0,

1, otherwise.
(3)

Here N is the iteration number and x2 is the “initial temperature.” The logarith-
mic “cooling schedule” ln(1+N) follows from convergence conditions [20].

The difference from the traditional SA is that here we want to improve
the average results for some fixed number of iterations N = K. Thus the
cooling rate should be regarded, too. A way to do it is by introducing the
cooling rate parameter x3.

This transforms expression (3)

ri+1 =
{

e
−hi+1

x2/ ln(1+x3N) , if hi+1 >0,

1, otherwise,
(4)

where x2 �0 defines an “initial temperature” of SA and x3 �0 describes the
“cooling rate”.

The third heuristic optimizes all three parameters x = (x1, x2, x3) for a
fixed optimization time defined by the number of “internal”1 iterations
N =K. Figure 3 shows the output window of the scheduler with school
preferences, initial, and optimal schedules for some student. The specific
feature is the separation of objective factors and subjective evaluation of
their relative importance. The objective factors include “Max number of
lessons per day”, “Teacher dayoffs”, “Empty window for student”, “Empty

1By “internal” we call the number of iterations done at fixed parameters x, by “external” we
call the number of iterations used in optimization of x.
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Figure 3. School preferences, initial, and optimal student schedules.

window for teacher”, “Two continuous lectures”. The subjective importance
is defined by “Penalty points”. Optimization starts by “Go to optimiza-
tion” button. The comparing the initial and optimized schedules of some
(randomly chosen) student we can evaluate the results. In general the effi-
ciency of the scheduler is high. The apparent reason is the complexity of
manual scheduling.

Computer experiments of school scheduling show that the results do
not improve regarding simplest “close-window” algorithm if we use SA
with default parameters x0 = x1 = x2 = 0.5. However we obtain significant
improvement by the same SA when we apply parameters optimized by the
Bayesian algorithm.

The Table I shows the results of 20 runs by 500 iterations each. The min-
imal, the maximal, and the expected values are given.

These results are illustrated by three pairs of figures (denoted “Mini”).
The first figure of each pair corresponds to the worst results, the right
figure shows the best results of 20 runs. The first pair Mini. 1 and Mini.
2 is for the BHA when all three parameters are optimized by the Bayes-
ian algorithm. The second pair Mini. 3 and Mini. 4 is for SA with default
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Table I. Comparing three algorithms

Iterations IT =500, Runs R =20

What algorithm Worst results Average results Best results

Bayesian heuristics BHA 882 1269 1961
Simulated annealing SA 612 940 1188
“Close-Window” 675 1027 1440
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parameters. The third pair Mini. 5 and Mini. 6 is for simplest “close-
window” algorithm.

2.3. optimization of genetic algorithms (GA)

Two versions of genetic algorithm are illustrated. The parameters of the
first version are set to default values. The parameters of the second version
are optimized by the Bayesian algorithm. The iteration number iIT n both
cases is 200. The knapsack problem is used as a test-function. The figure
Mini. 7 i shows the default values of the first version. The Mini. 8 the ini-
tial window of the second version. The Figure 4 shows the initial window
of the knapsack problem adapted for the GA. The Figure 5 illustrates the
output of the first version. The Figure 6 shows the output of the second
version. The Table II shows the worst, the average, and the best results of
both GA versions after 20 runs. The number of iterations is 200.

2.4. distance studies

For the graduate level distance and class-room studies of the theory of
games and markets in the Internet environment a set of examples of global
and discrete optimization was implemented using platform independent
Java applets and servlets. Here is the list of web-sites:

http ://pilis.if.ktlu.lt /̃jmockus;
http ://optimum2.mii.lt /̃jonas2;
http ://eta.ktl.mii.lt /̃mockus;
http ://proin.ktu.lt /̃mockus;
http ://mockus.us/optimum.

Figure 4. Initial window of the knapsack-GA problem.
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Figure 5. Default values of the first GA version.

Figure 6. Default values of the second GA version.

The theoretical background and the complete description of the soft-
ware is in the file “stud2.pdf”. Examples are described in two separate
sections: “Global Optimization” for continuous variables, and “Discrete
Optimization” for discrete optimization plus applications of linear and
dynamic programming.
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Table II. Results of default and optimized GA algorithms.

Iterations IT =200, Runs R =20

What algorithm Worst results Average results Best results

Default genetic algorithm 9460 9805 9940
Optimized genetic algorithm 9940 1046 10140

All the results for international users are in English. Specific examples
designed for Lithuanian universities are in Lithuanian.

3. Conclusions

1. The fast growing power of internet opens new possibilities for dis-
tant scientific collaboration and graduate studies. Therefore, some new
non-traditional ways for presentation of scientific results should be
defined.

2. The paper is a try to start a specific style designed for encouragement
of new approaches to presentation of scientific results.

3. The objective of the paper is to start the scientific collaboration with
colleagues sharing similar ideas.

4. The optimization of well-known SA and GA heuristics for solving
the knapsack and the school scheduling problems shows significant
improvement.

5. The results of optimization of other well-known heuristics for solving
different discrete problems are investigated and will be published in
the near future.
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